3,901 research outputs found

    Excitation and control of large amplitude standing magnetization waves

    Full text link
    A robust approach to excitation and control of large amplitude standing magnetization waves in an easy axis ferromagnetic by starting from a ground state and passage through resonances with chirped frequency microwave or spin torque drives is proposed. The formation of these waves involves two stages, where in the first stage, a spatially uniform, precessing magnetization is created via passage through a resonance followed by a self-phase-locking (autoresonance) with a constant amplitude drive. In the second stage, the passage trough an additional resonance with a spatial modulation of the driving amplitude yields transformation of the uniform solution into a doubly phase-locked standing wave, whose amplitude is controlled by the variation of the driving frequency. The stability of this excitation process is analyzed both numerically and via Whitham's averaged variational principle

    Autoresonant excitation of Bose-Einstein condensates

    Full text link
    Controlling the state of a Bose-Einstein condensate driven by a chirped frequency perturbation in a one-dimensional anharmonic trapping potential is discussed. By identifying four characteristic time scales in this chirped-driven problem, three dimensionless parameters P1,2,3P_{1,2,3} are defined describing the driving strength, the anharmonicity of the trapping potential, and the strength of the particles interaction, respectively. As the driving frequency passes the linear resonance in the problem, and depending on the location in the P1,2,3P_{1,2,3} parameter space, the system may exhibit two very different evolutions, i.e. the quantum energy ladder climbing (LC) and the classical autoresonance (AR). These regimes are analysed both in theory and simulations with the emphasis on the effect of the interaction parameter P3P_{3}. In particular, the transition thresholds on the driving parameter P1P_{1} and their width in P1P_{1} in both the AR and LC regimes are discussed. Different driving protocols are also illustrated, showing efficient control of excitation and de-excitation of the condensate

    Hermitian description of interacting inhomogeneous electron beams

    Get PDF

    Flavor Gauge Models Below the Fermi Scale

    Full text link
    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, XX, corresponding to the BLB-L symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, B+B^+, D+D^+ and Upsilon decays, DDˉ0D-\bar{D}^0 mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling gXg_X in the range (102104)(10^{-2} - 10^{-4}) the model is shown to be consistent with the data. Possible ways of testing the model in bb physics, top and ZZ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.Comment: 44 pages, 7 figures, 3 tables; B physics constraints and references added, conclusions unchange
    corecore